一、引言 我国电子商务正处于发展的黄金阶段,2017年网络购物比2016年净增长1.4万亿元,对连接客户、商家与物流企业的物流模式提出了巨大挑战。现阶段我国物流模式仍不能有效地应对如“双十一”大促销时期带来的物流曲棍球棒效应[1];物流“最后一公里”末端配送具有复杂的社会属性,虽然近年来有一定改善,但其中有些问题仍没有得到有效解决[2];大数据时代的物流企业存在信息数据易泄露的风险,并成为可持续性攻击的载体[3]。上述问题容易导致物流业低效率、高成本和低服务满意度,严重阻碍物流产业的发展。随着物联网、云计算信息技术的逐渐成熟,可以将大数据应用于物流业,实现当今物流产业各个环节信息共享与协同运作并提升效率,促使物流业向智慧物流模式转变。 智慧物流这一概念,由2010年国际商用机器公司(International Business Machines Corporation,IBM)发布的《智慧的未来供应链》研究报告中延伸而来。戴定一[4]认为,物联网时代通过新技术提高信息采集全面性、增加资源管控和优化运作流程,并以此视角界定智慧物流就是依赖信息资源创造更多价值,进而实现发展方式的转变。何黎明[5]提出智慧物流是基于物流互联网和物流大数据,通过协同共享创新模式与人工智能先进技术,重塑产业分工、再造产业结构和转变产业发展方式的新生态。智慧物流可以简单地理解为在物流系统中采用物联网、大数据、云计算和人工智能等先进技术,使整个物流体系如人的大脑一般智能、实时收集并处理信息,实现最优布局,最终协同物流系统中各方参与者高质量、高效率、低成本地分工协作。根据智慧物流的内涵来看,智慧物流主要有三大特征:一是实现信息交互与共享,有效降低物流成本、提高物流效率;二是智能决策与执行,向自动化与程序化方向发展;三是深度协同与一体化,以智能管理为核心优化管理模式,实现以最低的成本向客户提供高质量的物流服务[6]。 实现智慧物流的关键是技术,而技术又以大数据、云计算为核心。研究大数据的先驱——麦肯锡公司(McKinsey & Company)将大数据定义为大小超过常规的数据库工具获取、存储、管理和分析能力的数据集[7]。张文、苏玉[8]认为,云计算具有高效分配动态资源、根据用户请求生成动态计算与存储等功能,为大数据特征分析与挖掘提供良好平台。云计算是从资源层面的管理到应用层面的管理的发展过程,与大数据的应用恰好贴合;大数据则基于云计算的数据处理与应用对海量数据进行分布式数据挖掘,二者在当前的发展中密不可分。大数据云计算可以简单地定义为大数据基于云计算环境对数据的抓取、存储、计算与分析。 基于智慧物流的主要特征,针对物流存在的问题,学者们试图通过大数据、云计算技术构建物流模式实现智慧物流。孙彬、王东[9]基于大数据以“一个核心、三类需求、三个平台和两大门户”为主要建设内容,构建“五个层次、三条总路线”框架,实现丝绸之路物流业的精准化责任追溯和碎片化价值聚集,为智慧物流的国际化之路提出对策。陶君成等[10]针对城乡物流网络构建的不合理性,提出利用大数据共享实现平台信息共享及资源渠道整合,降低城乡物流成本。付平德[11]则基于大数据技术从感知、传输、存储和应用四个方面,较为系统地构建智慧物流的模式。张向阳、袁泽沛[12]将“多网融合”及二维码、云服务、云计算等信息技术与传统物流信息系统进行集成、融合,构建具有智能决策、动态感知能力与自动分配的“智慧云物流”平台体系。以上研究对于智慧物流发展存在的问题并没有进行深刻的探讨,仅基于智慧物流所需的大数据和云计算技术各自进行分析,忽略了两种技术在智慧物流中的不可剥离性。 本文从智慧物流的内涵出发,梳理基于大数据云计算的智慧物流的发展动态,并基于智慧物流的关键技术,分析现有智慧物流模式存在的问题,系统地探讨重构大数据云计算体系下智慧物流的发展模式,创造智慧物流最核心部分的智慧思维系统[13],为物流企业提供数据收集、处理、分析和预测,降低物流企业的运营成本,实现资源的有效配置,为客户提供更好的服务体验。 二、基于大数据云计算的智慧物流历史演变动态 (一)初步接触期:大数据云计算技术初步接触物流业 大数据发展的开端是在20世纪90年代至21世纪初,这一阶段是将数据“存起来”。传统的物流企业规模较小,进入门槛低,业务单一,多数企业只做简单的运输服务,企业仅能积累大量的单一数据,各业务板块的数据无法融合做进一步分析,不能为企业的决策提供支持。随着智能物流这一概念在国外出现,物流企业利用计算机协助处理物流信息,逐渐出现了用于数据管理的数据仓库[14]、用于决策的专家系统和企业自我更迭的知识管理系统。当物流企业的各板块数据进入数据库之后,企业通过对大量原始数据的重新组织和多维建模,作为专家系统的一端输入;企业的知识管理系统将企业一些可记录的技术数据化[15],将员工的想法、经验纳入知识库中,结合人的创新思维进行自我学习、创新,决策者则将知识作为专家系统的另一端输入,最后通过专家系统进行决策,实现物流智能化。