修订日期:2013-10-27 中图分类号:C93;TP18 文献标识码:A 文章编号:1003-207(2015)05-0089-09 DQI:10.16381/j.cnki.issn1003-207x.2015.05.012 1 引言 随着社会的发展,人们在生活、工作上的节奏越来越快,时间不确定性也随之越来越高,使得在物流配送过程中,经常有客户临时要求变更配送时间[1]。然而,随着电子商务的普及,物流配送已呈现出送货点分散且点多面广、送货批量小且成本高等特点,由于物流企业运力有限,因此难以适应客户变更配送时间的要求,这就使正在执行的配送方案变得不可行,目前在大家电、贵重物品、重要文件等需要客户亲自签收的快件配送上,已经产生了一系列问题。 因此,如何科学地对配送方案进行调整尤为重要!由于物流配送系统是一个典型的“人—机”系统,除了考虑降低成本损失之外,“人”的参与也必须受到重视。而人在面对扰动时做出的反应是不同的,因此当某一个客户的时间窗发生变化后,需要调整剩余客户的配送顺序,这样势必导致连锁反应,造成整个系统的混乱。此时就需要考虑扰动对整个物流配送系统的影响,生成使系统扰动最小的调整方案。在这种情况下,物流配送问题变得更加复杂,现有的方法和理论体系将难以胜任相关的研究工作。因此,如何有效地处理干扰事件,已成为影响现代物流产业发展的关键! 干扰管理[2]正是一种致力于实时处理这类问题的方法论,它需要针对各种实际问题和扰动的性质,建立相应的优化模型和有效的求解算法,通过对初始方案进行局部优化调整,实时生成使系统扰动最小的调整方案。这个调整方案不是针对扰动发生后的状态完全彻底地重新进行建模和优化,而是以此状态为基础,通过对初始方案进行局部优化调整,快速生成使系统扰动最小的调整方案。 干扰管理自提出以来,已成功应用到航空[3]、机器调度[4]、供应链[5]、项目管理[6]等多个领域。在客户时间窗变化的物流配送干扰管理研究上,Wang等[7]针对中国邮路问题,采用模糊理论对客户的时间窗进行表示,构建了服务水平最大化和任务完成时间最小化的数学模型;王明春等[8]针对需求变动和时间窗变化,构造了扰动模型对物流配送系统进行恢复;钟石泉等[9]针对客户时间窗和发货量的变化,通过设计虚拟车场等方法实现车辆的紧急调度;王旭坪等[10]为解决由客户时间变化引发的物流配送干扰问题,提出相应的扰动恢复策略;Hadjar等[11]针对客户时间窗变化问题,在考虑配送成本的情况下构建数学模型,并采用分支定界法进行求解;王征等[12]提出包含客户配送时间总偏离度、配送总成本、路径偏差量、最长行驶时间违反总量4个因素的扰动程度度量方法,以系统整体扰动最小化为目标,建立问题的目标规划数学模型;王旭坪等[13]采用时间窗模糊化处理方法定义客户满意度函数,根据干扰管理思想对车辆调度中组合性干扰事件进行分析,建立基于模糊时间窗的车辆调度组合干扰管理模型;杨文超等[1]以客户时间窗变化这类干扰事件发生时的问题状态为基础,提出了新车增派策略和多车协作策略,并在此基础上建立了问题扰动救援的启发式算法。以上学者虽然为解决客户时间窗变化的物流配送干扰问题开辟了新的思路,但是,由于物流配送系统是一个典型的“人—机”系统,包括客户、物流配送运营商、配送业务员等多个主体,现有研究过分重视物力、财力的调整与优化,而忽略人的行为因素,从而导致寻得的最优解往往在实践中并不可行。因此,针对客户时间窗变化的物流配送干扰管理这一多目标的、主观与客观相结合的优化难题,如何在考虑人的行为因素的情况下,通过权衡各方利益,形成一个多方满意的调整方案,从而以尽量小的扰动,尽快恢复系统的正常运行,是目前该领域存在的主要难题。 本文针对上述难题,通过结合行为科学中对人的行为感知的研究方法与运筹学中定量的研究手段,提出基于前景理论的扰动度量方法,构建客户时间窗变化的物流配送干扰管理模型及其求解方法,以期为物流配送干扰管理的决策过程提供支持。 2 扰动的分析 干扰事件发生后,为了有效地生成使系统扰动最小的调整方案,需要对扰动造成的影响进行分析,从而确定目标函数。由于客户、物流配送运营商以及配送业务员是使物流配送过程能够顺利运行的行为主体,三者的利益是研究的关键。因此,本文首先分析扰动对上述行为主体的影响,确定各主体考虑的首要目标,具体如下: (1)客户:客户是物流配送过程的接收者。当某个客户的时间窗发生变化后,需要调整剩余客户的配送顺序,这样势必引起连锁反应,影响后续一系列剩余货物的配送,使得某些客户无法按时收到货物。因此,对于客户来说,能否按时收到货物,是其考虑的首要目标。 (2)物流配送运营商:物流配送运营商是物流配送过程的主导者。扰动发生后,配送车辆的行车路线随之发生变化,此时必然影响配送成本。由于在整个物流配送过程中,配送成本是物流配送运营商关注的核心,因此,在生成调整方案时,应适当兼顾成本因素,尽可能节省配送成本。 (3)配送业务员:配送业务员是物流配送过程的执行者。当系统发生扰动后,初始配送方案将变得不可行。在新的调整方案下,势必需要更改行车路线,这就会影响配送业务员的工作情绪。如果新的行车路线与初始的行车路线具有较大偏差,将有可能导致配送业务员消极怠工。因此,调整方案与初始方案之间配送路线的偏差大小,是配送业务员考虑的首要目标。 本文通过分析上述三个行为主体面对扰动时所关注的目标,对三者的利益进行权衡,从而度量系统的扰动程度,以形成使系统扰动最小的调整方案。 3 基于前景理论的扰动度量方法 由第2节可知,物流配送系统包含多个主体,是一个典型的“人—机”系统,扰动必然会对人的行为产生影响。因此,现有在完全理性假设条件下的研究成果难以直接用于解决实际的物流配送干扰管理问题。 前景理论[14-15]是行为科学中具有重大影响的一种行为决策理论,它以人的有限理性为基础,能够更加真实的描述人在不确定条件下的决策行为。因此,本节以前景理论为基础,提出系统扰动的度量方法。 3.1 价值函数的表示 扰动发生后,由于各主体考虑的目标不同,因此,基于前景理论,对各个目标的价值函数进行表示,其中目标i的价值函数
可表示为: