近年,随着信息技术与互联网金融的高速发展,P2P网络信贷的兴起在世界范围内产生冲击。Lending Club2007年在美国成立,七年间作为美国P2P网络信贷的领先企业,目前已经成功撮合40亿美元的借贷交易。与此同时,我国P2P网络信贷成长迅速,最新出炉的中国P2P网贷指数显示,截至2014年12月30日上午11时,全国P2P网贷平台共2 358家,其中活跃平台(纳入中国P2P网贷指数统计)1 680家。众所周知,由于网络信贷的高速成长,网络信贷企业水平参差不齐。2014全年问题企业达275家,仅2013年12月份,由于投资人撤资,行业兑付压力骤升所导致的问题企业就高达92家。网络信贷企业失败的原因总结起来,除了自身因素外,绝大部分都是由于平台内部风险控制较差,一些借款客户不能正常还款,使得贷款坏账率过高,而平台承诺投资人的收益过高,实际的优质业务很少,导致平台资金链断裂所致。因此对于网络信贷公司而言,降低信贷风险迫在眉睫。 审计作为内部控制风险管理的有力武器,查错纠弊、警示预险是其功能。随着网络信贷P2P日益迅速的发展,企业面临的信贷风险越来越多,这需要内部审计承担更多的治理和管理职能,对重要风险进行预警。由于P2P网络信贷建立在互联网数据化的基础上,网络信贷风险的审计预警应当利用网络信贷业务内部外部相关因素数据进行准确评价,将内外部风险因素传导、风险识别、预警提示等结合起来,形成量化的风险评估结果,以准确判断业务风险高低,识别风险控制重点,形成审计预警,帮助审计人员实现事前风险控制。基于此,本文针对信贷业务流程中的信贷风险因素,模拟各风险因素间的因果关系,采用Petri网构建信贷风险模型,计算出各风险因素之间的传导概率,从而量化描述风险因素的传导机制,帮助审计人员更好地管控风险传导过程。 二、文献综述 目前国内外对于P2P网络信贷风险的研究主要集中在对P2P网络信贷模式的探讨。P2P网络信贷属于微型金融领域,陌生人通过互联网进行借贷交易,这种模式必然存在比传统金融机构借贷模式更大的风险。如何消除互联网环境下网络信贷风险所造成的负面影响,已经成为微型金融领域研究的一项核心问题。沈良辉、陈莹认为,我国P2P网络信贷行业存在借款人信用信息识别难、借款用途真实性辨别难、借款抵押担保难等问题,而且网络信贷公司沉淀资金安全性差,网络信贷业务领域的可控性差,线上业务量少,自身特点导致的风险性也大。雷舰认为,对P2P行业的监管应该采取行业自律与外部监管相结合的原则,建立统一的行业准入机制,规范行业运行机制。黄叶危、齐晓雯认为P2P网络信贷存在法律缺失、平台用户使用不当、平台自身导致的风险等问题,并认为风险管理应以信用风险控制为主,建议建立共同信用评级系统。由上可见,国内外对P2P网络信贷风险的相关研究,大多为定性研究信贷风险的相关影响因素,或只是提出风险管理的建议,并没有将网络信贷的风险管理与审计预警结合起来。 从理论上讲,对金融风险的处理和控制当然是越早越好。以往,只有当借款人偿还不力时,网络信贷企业才会采取针对性的行动,但此时问题已经发生并恶化至不可收拾,这种滞后处理对充满风险的信贷行业是非常不利的,会造成巨大损失,如能建立审计预警系统,在前期就根据各笔贷款业务风险程度实施预警审计方案,将大大降低企业风险。审计预警系统是主动的控制防御,根据风险相关影响因素的因果关系,系统地进行风险评估,对高风险项目实现审计预警,风险越高的贷款项目预警越敏感,相应的审计措施越周密。如控制贷款审批将不良贷款率降至最低,调整过高的投资回报率等,以及时降低企业风险,实现企业审计风险控制。鲁爱民、孟志青认为审计预警应在明确预警、排警的前提下,结合被审计单位内外部环境状况,对公司运行的重要影响因素(包括管理机制与制度执行等)进行评价,将风险识别及信息传递、预警提示等有机结合,以保证预警系统目标的实现。国内的预警研究往往集中在危机已经发生或者危机发生后,且研究重点主要集中在定性研究,如对危机应对的建议或是对风险的评估。研究的方法也主要是分析风险相关因素的因果关系并通过图表描述,然后通过计算或者演算寻找规律从而进行预测。但是这类研究也存在一定的缺陷,即仅仅着眼于因果联系在实际应用中显然不够,还需要能够事先根据外部数据及时反应,通过定量分析,迅速得出准确的风险评价结果,有效预警。Petri网建模能够随着外界输入信息的变化作出相应的调整,及时通过风险影响因素的因果联系,准确评价风险高低,有利于审计人员事先对P2P网络信贷风险的控制,预防信贷风险造成的危害。 三、基于Petri网的审计预警系统模型 从前人各类审计预警系统的构想中不难看出,大多数设想都是基于工作流程创造的,这些按照工作流程设想的框架都缺少系统模型。在工作流的过程建模中,要求所建立的模型具有较强的描述能力,建模过程简便、直观,所建立的模型易于使用,同时还要求模型易于修改和扩充,以适应不断变化的工作环境。进一步地,模型还要求能够便于被验证,进行性能评价。Petri网作为一种描述并发系统动态行为的有力工具,能够很好地满足上述这些要求,准确描述信贷审批流程。基于此,本文在阐述P2P网络信贷审批过程的基础上,根据互联网金融企业开展网络信贷业务的经验教训,突出内外部因素在审批过程中与风险的因果关系,建立风险评价指标;给出基于模糊Petri网的评价方法,为定量评价网络信贷风险提供参考手段,为审计预警提供依据,确保互联网金融企业网络信贷风险的控制。