DOI:10.20066/j.cnki.37-1535/G4.2023.02.06 一、引言:新技术时代下的计算政治学 习近平总书记指出,“与以往历次工业革命相比,第四次工业革命是以指数级而非线性速度展开”①。第四次工业革命本质上是信息革命,核心特征是计算机技术、互联网技术科学的深入发展和持续升级。随着第四次工业革命的发展,人类生产生活方式和组织方式、运行价值发生深刻变化,引发了社会科学研究范式、研究工具的重大变革②。 一般来说,研究范式是通过学术研究方法、研究问题的学术评价标准等要素表现出来的,它体现着学科内容和方法的统一,常常被认为是新学科形成的标识。政治学以政治现象及其发展规律为研究对象,在不同的技术时代,政治现象形态及其环境等具有很大差异性。关注的问题不同,相应研究也显示出不同的特征。在第四次工业革命过程中,计算机的运力不断提升,计算机应用软件界面愈益简单,研究方法和工具不断更新,大量研究者有意识地应用新的计算方法来分析政治现象和议题,形成了计算政治学的研究方法和范式,标志着计算政治学的问世。 计算政治学(Computational Politics)是计算社会科学(Computational Social Sciences)的一个分支,属于计算科学与政治学的交叉学科。它基于计算社会科学的方法论,利用不断扩展的多源异构的海量大数据、日益增强的算力和逐步优化的算法,来研究政治行为与话语实践,形成了大数据政治学、智能体仿真模拟和计算实验等多种计算政治学的研究形态。大数据政治学的出现,使得许多政治学研究者可以直接分析海量的文本信息、图像、视频和社会网络信息等非结构化数据,探索分析新的研究议题,并为传统议题研究提供新方法。智能体仿真模拟也成为计算政治学的重要分析方法,在当前能够更简单地设定参数、调整参数,更好地分析主体与环境的互动关系。此外,更多的政治现象在计算机和网络平台出现,也为研究政治行为提供了更多创新性场域。例如,人工智能实验室OpenAI在2022年11月发布了ChatGPT,可在提示词(prompt)的引导下生成文本,也可以用来生成大量政治话语,这为研究新技术条件下的政民互动形态提供了新的机制性可能,而元宇宙等新兴技术也为计算政治学提供了新的研究议题。 二、从政治算数到计算政治学 从计算的角度研究政治学并不是21世纪的新发明。随着现代自然科学的发展,人们一直希望能够运用像数学、物理那样的自然科学的范式来研究社会问题。格劳秀斯就试图以模仿数学的方式来建构新的社会科学。配第在《政治算数》(Political Arithmetick)中希望通过数学算式规则来更好地实现人的幸福,强调在政治学中引入数学计算,创建以“数学”为基础的国家科学,用数学工具来揭示治国方略的规律③。配第使用大量统计资料,研究工业革命后资本主义生产的内在流通和生产过程。马克思认为,配第所创立的“政治算术”是“政治经济学作为一门独立科学分离出来的最初形式”④。 19世纪末20世纪初,实证主义、科学主义思潮极大地影响了政治学的发展。人们认为,政治学应与自然科学一样,采用归纳和实证方法来研究。20世纪20年代,美国兴起以“科学主义”为指导的“新政治学运动”,到“二战”后形成行为主义政治学的研究范式。学者们认为,应该通过可观察的政治行为构建政治理论、进行政治分析。但即便在定量研究盛行的美国,因当时的统计硬件和软件滞后于统计理论,政治学者无法直接基于统计理论进行“计算”,大部分实证研究主要是定性分析,以统计为主的定量研究停留在基础方法层面⑤。此后,在大规模数据采集技术形成、计算机分析软件逐步成熟后,政治学定量方法才逐步成为美国政治学统计分析的主流。 1975年,Alker提出Polimetrics概念,意指通过数学形式、统计技术对观察到的政治现象进行的编码、度量和对政治理论的形式模型(formal model)。但是,这个概念内涵过于丰富,许多非计算的描述(逻辑、集合论、博弈论等)也都归属于此概念⑥,使此概念的使用受到限制。随着人工智能理论的发展,越来越多的学者注意到人工智能对社会的影响,开始强调计算科学对研究政治现象的作用。1987年,Richard Ennals提出“计算政治”的概念,主张采用并行计算、并行逻辑程序设计语言等方式来解决长期存在并在人工智能时代不断发展的并行与复杂协同问题⑦。麻省理工学院人工智能实验室的John C.Mallery指出,应该开辟“计算政治学”的学术领域,开发更好的政治认知理论和计算模型,科学设计评估这些理论和模型的标准,推动国际社会中人工智能系统的作用。罗切斯特大学的Edith Hemaspaandra等分析了1876年刘易斯·卡罗尔(Lewis Carroll)提出的一种选举制度。该选举制度是为了解决18世纪法国思想家提出的“孔多塞悖论”,即认为在选民投票偏好中变动最少的人应该当选。计算科学教授利用计算科学中的算法,确认这种方式虽然在运行中更为复杂,但确实是更好的选举方式⑧。此外,他们还系统分析了选举投票相关的计算和可处理性问题,通过对算法的比较,指出模拟退火算法(Simulated Annealing Algorithm)比美国正在使用的选举计算方式更为科学⑨。 新世纪以来,更多学者提出,应该利用计算科学的方式来研究政治和社会现象。许多计算机学者开始分析公共管理与政策过程中的信息处理过程。例如,麻省理工学院计算机科学与人工智能实验室的Patrick H.Winston和Mark A.Finlayson提出“计算政治学”,一方面帮助政治学学者和政府工作人员找到合适的分析工具来分析日益增多的信息流,以作出更加可靠的决策;另一方面,越来越多的学者指出,在理性行为之上还有很多“非理性”机制影响认知决策,希望能有更好的工具来理解社会环境⑩。但在大数据分析技术出现之前,这些计算学者开发的工具分析能力有限,无法理解复杂的句子。总之,在这个时期,关于计算政治的研究,大多由计算机专业教授发起,他们试图用计算方法分析政治现象。但是他们实际上并未认真分析政治运行过程和机制,而是简单将政治学视为计算科学的应用场景。随着高性能计算显卡出现,算力得到提升,数据采集技术得到新的发展,海量的大数据更容易被政治学者使用和分析,包括Python等分析软件的出现,进一步促进了计算政治学的发展,计算政治学的重点才由此逐步从“计算”转向“政治”。