中西古代数学在其民族文化中价值观念的差异,是我们数学史研究中应当十分注意的问题。 中国古代数学的构造性、机械化的算法体系完全有别于以古希腊为代表的西方数学的逻辑风格和演绎体系。为什么会出现这两种不同风格的数学体系、数学思想?难道是民族智力差异所造成的?答案当然是否定的。数学文化史的研究表明,在人类文化发展过程中,每一种文化系统都有其特定的数学发展和构造模式,数学既是在某个文化系统中发生发展的必然产物,又是文化系统中一种文化的特定的表现形式,不同的文化传统会形成不同形式的数学与科学技术的结构形式。因此可以说,中西文化传统的差异造成了中西古代数学思想以及数学结构形式的差异。换句话说,文化传统往往规定了数学发展的必然取向。 一、从中西古代数学文化史的比较意义上分析,形成中西古代数学的两种倾向:逻辑演绎倾向和机械化算法倾向,其作用与构造差异主要是由文化系统赋予的文化层次及其价值取向的差异造成的,这两种倾向的对立统一就构成了数学自身内在的矛盾运动和发展动力。 数学文化史的研究表明,人类古代数学作为文化系统中一个操作运演的子系统,从一开始就具有双重功能(或称为双重特性),即数量性的功能和神秘性的功能(注:王宪昌,《数学与人类文明》,延安大学出版社,1990年第58-70页。)。而不同民族文化中的数字或数学都在特定的文化氛围中有某些神秘性,而且不同民族文化中的数学神秘性发展的道路是各不相同的。 在古希腊文化的发展中,原始数学始终沿着神秘性和数量性的双重功能统一性继承的轨道向前发展。古希腊数学与神秘性的结合,使得他们从宗教、哲学的层次追求数学的绝对性以及解释世界的普遍性地位,这正是古希腊数学完全脱离实际问题,追求逻辑演绎的严谨性的文化背景。 古希腊人在从蒙昧走向文明的过程中,于公元前8世纪丢掉他们的象形文字而采用腓尼基的拼音字母时,就吸收了埃及与巴比伦的数学成果,这时的古希腊数学,实际上是古希腊原始数学神秘主义与埃及、巴比伦的数学的结合体,这种结合创造了数学体系、数学运演与数学方法的广泛的神秘解释作用。这种文化传统正是古希腊数学具有强烈的神秘作用以及后来具有宗教、哲学特征的根本原因。毕达哥拉斯学派就已将数学着上宗教色彩,其“万物皆数”和追求“数的和谐”观念把数学的这两种功能牢牢地结合在一起,并使之运演操作,共同发展。到了古希腊最有影响的大哲学家柏拉图的唯心主义哲学,把数学的神秘性及数量性意义演化为一种哲学意义的数学理性,直到亚里士多德认为“数就是宇宙万有之物质”(注:亚里士多德,《形而上学》,中译本,商务印书馆,1984年,1986a。),古希腊借助于数学解释一切的文化传统使数学成为具有文化意义的理性基础。古希腊与西方的天文、医学、逻辑、音乐、美术、宗教、哲学中,数学都在发挥着理性的解释作用,并随着西方文化的发展而不断得以继承和强化。基督教神学逐渐吸收了古希腊用数学解释世界的文化传统,在托马斯·阿奎那(1225-1274)的努力下,把以数学为理性模式的自然科学以及由数学而产生的各观念都与神学结合起来,使得数学成为当时自然知识和神学相结合的这座大厦的基石(注:丹皮尔,《科学史》,商务印书馆,1975年第13页。)。文艺复兴时期对古希腊数学理性的归复使欧洲人知道了自然界是按照数学方式设计的,数学被认为是唯一的真理体系。“这个理论鼓舞了十六、十七甚至一些十八世纪的数学家的工作。寻找大自然的数学规律是一项虔诚的工作,是为了研究上帝的本性和做法以及上帝安排宇宙的方案”(注:M.克莱因,《古今数学思想》,中译本,上海科学技术出版社,1979年第252页。)。直到今天,西方著名科学哲学家波普尔还认为《几何原本》是一种对当时宇宙理论、物理理论给出“一切物理解释和论述的基本工具”(注:波普尔,《猜想与反驳》,上海译文出版社,1986年第123页。)。英国哲学家兼数学家罗素认为在西方文化中“数学是我们信仰永恒的与严格的真理的根源。”(注:罗素,《西方哲学史》(上),商务印书馆,1983年第64页。)他进一步总结指出:“数学与神学的结合开始于毕达哥拉斯,它代表了希腊、中世纪的以至直迄康德为止的近代的宗教哲学的特征。”(注:罗素,《西方哲学史》(上),商务印书馆,1983年 第64页。) 因此,从数学文化史的意义上分析,发端于古希腊的西方数学不仅仅是一个数学意义的运演操作系统,更主要的是它作为一种文化系统中起主导作用的理性解释系统,或者称之为一种理性构造的规范模式。在西方文化中,西方数学解释宇宙的变化,引导理性的发展,参与物质世界的表述,任何学科的构建都必须按照文化理性的要求模仿和运用数学的模式。用数学解释一切是西方数学在与其适应的文化获取的价值观念。 在中国文化发展中,我国古代数学筹算操作的机械化运演形成的计算体系来源于作为原始数学的竹棍操作运演在历史进程中的演化。 中国古代是借助于竹棍为特定物进行数字、数学操作运演的民族。中国古代数学具有外算与内算的双重功能,即“算数万物”的算术性功能和神秘主义的解释性功能(注:俞晓群,“论中国古代数学的双重意义”,载《自然辩证法通讯》,1992年第4期。)。竹棍既是中国原始计数物又是某些神秘性的表示物。例如中国原始巫术中的蓍草就是运用竹棍或类似竹棍的排演操作来表现某种神秘性的。《周易》中的揲蓍之法就是一种有代表性的原始数学的操作运演,只不过它表现的是神秘性的解释形式。与古希腊以一种理性表现自己的解释力量,以脱离具体事例而表现自己的数量解释意义不同,中国原始数学从一开始就把自己的神秘性、数量性特征蕴含在由竹棍的排演形式之中,是一种由以神秘性为主要特征的竹棍占卜的《周易》竹棍排演体系,逐步演化为以数量性特征为主而形成的筹算的运演体系,依靠编造某类具体实际生产、生活中的例子来表现自己的数量运演作用。中国原始竹棍排演的这种转变,使筹算失去了神秘性的主体地位,从而也失去了可能作为宗教与哲学的思维性的研究方向,因而筹算不可能具备西方数学那种用数学理性解释一切的价值取向,而在中国文化的特定氛围中,筹算主要是作为纯数量意义的运演而成为适应这种文化意义的一种技艺,并发展成为一种计算运演发达的技术。从文化系统角度来看,筹算是一种用数量变化意义来解释实际问题的操作运演的应用子系统。筹算一般不直接参与理性的描述,可以说,在中国文化中,它长于对“形而下”的问题作分门别类的数量的解释,为解决问题而制定各种算法,并常常将“理”寓于“法”中,算理结合、寓理于算的特征赋予筹算解释“形而上”问题的文化功能。因此,数学的价值观念是通过发展技艺实用,而非理性思辨。刘徽在《九章》注的序中把筹算处于《周易》解释意义之下的技艺应用地位说得十分清楚:“昔者包牺氏始画八卦,以通神明之德,以类万物之情,作九九之术以合六爻之变。”中国文化中,筹算的价值取向就是作为“六爻之变”意义基础上的应用技艺,并以快速、准确、简洁解决具体问题来发展自己的操作运演。